Faculté des sciences de base

INTRODUCTION AUX PROBABILITÉS Série 5

Exercice 1. Soient $X_1, X_2, ...$ des variables aléatoires définies sur un même espace probabilisé $(\Omega, \mathcal{F}, \mathbb{P})$. Montrer que $X_1, X_2, ...$ sont mutuellement indépendantes si et seulement si pour tout $m \geq 2$, et pour tout m-uplets $(a_1, \dots, a_m) \in \mathbb{R}^m$, on a

$$\mathbb{P}(\bigcap_{1 \le j \le m} \{X_j \le a_j\}) = \prod_{1 \le j \le m} \mathbb{P}(X_j \le a_j).$$

Exercice 2. Soient X_1, \ldots, X_n des variables aléatoires définies sur un même espace probabilisé discret $(\Omega, \mathcal{F}, \mathbb{P})$. Montrer, directement à partir de la définition de l'indépendance, que X_1, \ldots, X_n sont mutuellement indépendantes si et seulement si pour tous $y_1, \ldots, y_n \in \mathbb{R}$, on a

$$\mathbb{P}(\bigcap_{i=1}^{n} \{X_i = y_i\}) = \prod_{i=1}^{n} \mathbb{P}(X_i = y_i).$$

Exercice 3. Soient $(\Omega_i, \mathcal{P}(\Omega_i), \mathbb{P}_i)$, pour i = 1, ..., n, des espaces probabilisés discrets. Montrer que la mesure de probabilité produit \mathbb{P}_{Π} sur $(\Pi_{i=1}^n \Omega_i, \mathcal{F}_{\Pi})$ existe et est unique.

Exercice 4. Considérons un pigeon solitaire sur \mathbb{Z}^2 : à chaque étape, il fait un pas vers le haut, le bas, la droite ou la gauche avec probabilité respectivement $p_u, p_d, p_r, p_l \in [0, 1]$, où $p_u + p_d + p_r + p_l = 1$. De plus, on suppose que les pas sont indépendants. Construire l'espace probabilisé associé à la "marche" à n pas, et calculer la probabilité que le pigeon soit de retour en 0 après 2n pas.

Exercice 5. Thomas Bayes a considéré l'exemple suivant : supposons que chaque semaine, la même loterie a lieu avec les mêmes règles, qui sont que parmi les 10000 billets vendus une proportion p d'entre eux gagne. En tant que joueur.se, vous ne savez pas quelle est la proportion p de billets gagnants dans cette loterie, vous savez seulement qu'elle est soit de 1/3 soit de 2/3. Maintenant, vous avez joué n fois et gagné m fois : pouvez-vous alors dire quelque chose sur ce paramètre p?

Pour analyser cette situation, on considèrera l'univers $\Omega = \{1/3, 2/3\} \times \{0, 1\}^n$, consistant en la probabilité (inconnue) de gagner et la suite des n gain/perte. On peut le munir de la tribu $\mathcal{F} := \mathcal{P}(\Omega)$.

0.1 \star Pour le plaisir (non-examinable) \star

Exercice 6. À chaque $x \in [0,1]$, on associe son développement dyadique $x = \sum_{i \geq 1} 2^{-i} x_i$, et on rend ce développement unique en demandant qu'il ne se termine pas par une suite infinie de 1. Montrer que l'application $f:[0,1] \to \{0,1\}^{\mathbb{N}^*}$ définie par $f(x) = (x_1, x_2, \dots)$ est injective et mesurable de $([0,1], \mathcal{F}_B)$ vers $(\{0,1\}^{\mathbb{N}^*}, \mathcal{F}_\Pi)$, au sens où pour tout $E \in \mathcal{F}_\Pi$, on a $f^{-1}(E) \in \mathcal{F}_B$. De même, montrer que l'application $g:\{0,1\}^{\mathbb{N}^*} \to [0,1]$ donnée par $(x_1, x_2, \dots) \to \sum_{i \geq 1} 2^{-i} x_i$ est surjective et mesurable.

Exercice 7. Pour tout $i \geq 1$, soient $\Omega_i = \{0,1\}$, $\mathcal{F}_i = \mathcal{P}(\Omega_i)$ et $\mathbb{P}_i(0) = \mathbb{P}_i(1) = 1/2$. En utilisant la correspondance dyadique de l'exercice précédent, et en supposant l'existence de la mesure de probabilité uniforme \mathbb{P}_U sur $([0,1],\mathcal{F}_B)$ (ou toute autre manière!), montrer qu'il existe une mesure de probabilité produit \mathbb{P}_{Π} sur $(\Pi_{i\geq 1}\Omega_i,\mathcal{F}_{\Pi})$.